

Daily Tutorial Sheet-1 JEE Main (Archive)

1.(A) Fe (no. of moles) = $\frac{558.5}{55.85}$ = 10 moles

C (no. of moles) = 60/12 = 5 moles.

(atomic weight of carbon = 12)

2.(A) 1 atomic mass unit on the scale of 1/6 of C-12=2 amu on the scale of 1/12 of C-12.

Now, atomic mass of an element $= \frac{Mass\,of\,one\,atom\,of\,the\,element}{1\,amu\,(Here\,on\,the\,scale\,of\,\frac{1}{6}\,of\,C-12)}$

Mass of one atom of the element

2 amu (Here on the scale of $\frac{1}{12}$ of C – 12)

Numerically the mass of a substance will become half of the normal scale.

3.(B) 1 mole of $Mg_3(PO_4)_2$

 \Rightarrow 3 moles of Mg atom + 2 moles of P atom + moles of O atom

8 moles of oxygen atoms are present in = 1 mole of $Mg_3(PO_4)_2$

0.25 mole of oxygen atoms are present in = $\frac{1 \times 0.25}{8}$ = 3.125×10^{-2} moles of Mg₃(PO₄)₂

4.(A) $2Al_{(s)} + 6HCl_{(aq)} \longrightarrow 2Al_{(aq)}^{3+} + 6Cl_{(aq)}^{-} + 3H_{2(g)}$

6 moles of HCl produced H_2 at STP = $3 \times 22.4 L$

 $\therefore 1 \text{ mole of HCl will produce H}_2 \text{ at STP} = \frac{3 \times 22.4}{6} = 11.2L$

5.(A) The data illustrates the law of conservation of mass.

6.(A) Since total moles of HCl is conserved

$$\mathbf{M}_1 \mathbf{V}_1 + \mathbf{M}_2 \mathbf{V}_2 = \mathbf{M}_f \mathbf{V}_f$$

$$0.5 \times 750 + 2 \times 250 = M_f (750 + 250)$$

$$M_{\rm f} = \frac{875}{1000} = 0.875 \, M$$

7.(C) Mass ratio of $O_2: N_2$ is 1:4

Mole ratio of $O_2: N_2$ is $\frac{1}{32}: \frac{4}{28}$

Ratio of molecules of $O_2: N_2$ is same as molar ratio i.e. 7: 32.

8.(B) 52 gm BaCl₂ with 9 gm H_2O .

$$\left(\frac{52}{208}\right)$$
 mole of BaCl_2 with $\left(\frac{9}{18}\right)$ moles of $\operatorname{H}_2\operatorname{O}$

 \therefore 1 mole of BaCl₂ with 2 moles of H₂O

9.(C)
$$A + 2B + 3C \longrightarrow AB_2C_3$$

$$t = 0 \qquad 0.1 \qquad 1 \qquad 0.036 \qquad 0$$

C is limiting regent therefore moles of $\,\mathrm{AB_2C_3}\,$ will be 0.012.

 ${\rm Mass~of~0.012~mol~AB_2C_3~is~4.8~gm}$

Mass of 1 mol
$$AB_2C_3$$
 is $\frac{4.8}{0.012} = 400$

Molar mass of AB_2C_3 is 400 gm

$$A + 2B + 3C = 400 \,\mathrm{gm}$$

$$60 + 2B + 240 = 400 \qquad \Rightarrow \qquad B = 50$$

Atomic mass of B is 50u

- **10.(C)** Moles of arsenic acid in 35.5 gm = 0.25 according to given reaction 2 moles of arsenic acid give 1 mole As_2S_5 therefore 0.25 moles of arsenic acid will give 0.125 mole.
- 11.(B) For minimum molecular weight compound has just one sulphur atom.

Mass of sulphur atom is 8% of mass of 8% = mass of one sulphur atom

$$8\% = 32$$

$$100\% = \frac{32}{8} \times 100 = 400$$

Mass of molecule = 400 gm / mole

12.(B) For neutralization

gm equivalent of acid = gm equivalent of base

$$0.1V = 0.04$$

$$v = 0.4$$
 litre = 400 ml

13.(C) Mass of acid in x mL of 45% acid solution is $\frac{45x}{100}$

Mass of acids in (800 – x) of 20% acid solution is $\frac{20(800-x)}{100}$

And mass of acid in 800 mL of 29.875% acid

$$\Rightarrow$$
 29.875 × 8 = 239 gm

So,
$$\frac{45x}{100} + \frac{20(800 - x)}{100} = 239$$
 \Rightarrow $x = 316 \text{ mL}$

$$\mathbf{14.(C)} \hspace{1.5cm} \mathbf{M_2CO_3} + 2\mathbf{HCl} \rightarrow 2\mathbf{MCl} + \mathbf{H_2O} + \mathbf{CO_2}$$

Molar ratio

$$\frac{1}{2M+60}$$
 moles yield $\frac{1}{2M+60}$ moles $CO_2 = 0.01186$ (given)

$$\Rightarrow$$
 M = 84.3

- **15.(D)** O 61.4%
 - C 22.9%
 - H 10.0%
 - N 2.6%

Hence, gain in wt. is 7.5 kg

75 kg healthy human adult has 7.5 kg H atom (10%) which would be replaced by 15 kg $^2\mathrm{H}$ -atoms.